Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Институт (факультет) **Физико-математический факультет** Кафедра **Лазерных технологий**

АННОТАЦИЯ

к рабочей программе

«Основы проектирования лазерных технологических комплексов»

Индекс по учебному плану: Б1.В.ДВ.04.02

Направление подготовки: 12.03.05 «Лазерная техника и лазерные технологии»

Квалификация: бакалавр

Профиль подготовки: <u>Лазерная техника и лазерные технологии в машиностроении</u> и приборостроении

Виды профессиональной деятельности: научно-исследовательская, проектно-конструкторская, производственно-технологическая

Разработчик: доцент кафедры ЛТ К.Ю. Нагулин

РАЗДЕЛ 1. ИСХОДНЫЕ ДАННЫЕ И КОНЕЧНЫЙ РЕЗУЛЬТАТ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1. Цели и задачи дисциплины, ее место в учебном процессе

Целью освоения дисциплины является формирование у студентов понимания теоретических и физических основ проектирования современных лазерных технологических комплексов и систем для последующего использования этих знаний при разработке и эксплуатации лазерного технологического оборудования.

1.2 Задачи дисциплины (модуля)

Основными задачами дисциплины являются:

- 1) изучение принципов генерации лазерного излучения и особенностей систем накачки лазеров различных типов;
- 2) изучение устройства и принципа действия современных лазерных технологических комплексов;
- 3) изучение основ расчета параметров лазерного технологического комплекса в целом и его составных компонент;
- 4) приобретение навыков расчета оптической системы лазерной головки;
- 5) умение проводить оптимизацию режимов работы современных лазерных технологических комплексов;

1.3. Место дисциплины (модуля) в структуре ОП ВО

Дисциплина «Основы проектирования лазерных технологических комплексов» входит в состав вариативной части Блока 1.

1.4. Квалификационные требования к содержанию и уровню освоения дисциплины Компетенции, которые должны быть реализованы в ходе освоения дисциплины:

ПК-3: способность к проведению измерений и исследования различных объектов по заданной методике

ПК-6: способность к оценке технологичности и технологическому контролю простых и средней сложности конструкторских решений, разработке типовых процессов контроля параметров механических, оптических и оптико-электронных деталей и узлов.

РАЗДЕЛ 2. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ И ТЕХНОЛОГИИ ЕЕ ОСВОЕНИЯ

Распределение фонда времени по семестрам и видам занятий для очной формы обучения

		Виды учебной		Формы и вид	
Наименование раздела и темы	сего часов	деятельности,		Формы и вид	
		включая	Коды	контроля	
		самостоятельную	составляющ	•	
		работу студентов и	ИХ	освоения	
		трудоемкость (в	компетенци		
		часах/	й	составляющих	
		интерактивные		компетенций	
		часы)			
	B(•			

	1		ı		1		
		И	16.	I.	36.		(из фонда
		текции	лаб. раб.	тр. зан.	сам. раб		оценочных
		лек	лаб	пр.	сам		средств)
Раздел 1. Лазерные технологические комплексы: физические основы, структура и принцип действия						ФОС ТК-1	
Тема 1.1. Физические							Текущий
основы генерации, транспортировки лазерного излучения и его взаимодействия с веществом	20	4	4		12	ПК-3 (3)	контроль, отчет л/р
Тема 1.2. Структура и принцип действия лазерных технологических комплексов.	20	4	4		12	ПК-3 (3)	Текущий контроль, отчет л/p
Тема 1.3. Основы проектирования и расчета силовых модулей технологических лазеров	20	4	4		12	ПК-3 (3) ПК-6 (3)	Текущий контроль, отчет л/p
Раздел 2. Основы проектирования и расчета оптических головок технологических лазеров						ФОС ТК-2	
Тема 2.1. Основы проектирования и расчета оптических головок технологических лазеров для резки	20	4	4		12	ПК-3 (У), (В)	Текущий контроль, отчет л/р
Тема 2.2. Основы проектирования и расчета оптических головок технологических лазеров для сварки	20	4	4		12	ПК-3 (У), (В)	Текущий контроль, отчет л/p
Тема 2.3. Основы проектирования и расчета оптических головок технологических лазеров для лазерной наплавки	20	4	4		12	ПК-3 (У), (В)	Текущий контроль, отчет л/р
Раздел 3. Проектирова технологических компл		спомо	1 <u> </u>	і <u> ——</u> Іьных	cucm	ем лазерных	ФОС ТК-3

Тема 3.1. Проектирование систем транспортировки лазерного излучения в лазерных технологических комплексах	20	4	4	12	ПК-3 (У), (В) ПК-6 (У), (В)	Текущий контроль, отчет л/p
Тема 3.2. Проектирование систем охлаждения для лазерных технологических комплексов	20	4	4	12	ПК-3 (У), (В), ПК-6 (У), (В)	Текущий контроль, отчет л/р
Тема 3.3. Проектирование систем подачи рабочих газов для лазерных технологических комплексов	20	4	4	12	ПК-3 (У), (В), ПК-6 (У), (В)	Текущий контроль, отчет л/р
	ФОС ПА					
Раздел 1. Обзор литературы.	22			22	ПКЗ (3)	ФОС ТК-4
Раздел 2. Краткая теория	14			14	ПК-3 (3)	ФОС ТК-5
Раздел 3. Оригинальная часть	36			36	ПК-3 (У), (В)	ФОС ТК-6
Экзамен	36			36	ПК-3 (3), (У), (В), ПК-6 (3), (У), (В)	ФОС ПА комплексное задание
ИТОГО: количество часов:	288/ 36	36/1 8	36/1 8	198		

РАЗДЕЛ 3. ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Учебно-методическое обеспечение учебной дисциплины

3.1.2. Основная литература:

- 1. Бутиков Е.И. Оптика. Учебное пособие. 3-е изд., доп.- СПб.: «Лань», 2012.-608 с. Доступен на сайте издательства по адресу: http://e.lanbook.com/view/book/2764/
- 2. Улитенко, А.И. Принципы построения индивидуальных систем охлаждения электронных приборов и устройств [Электронный ресурс] : учебно-методическое пособие / А.И. Улитенко, В.С. Гуров, В.А. Пушкин. Электрон. дан. М. : Горячая линия-Телеком, 2012. 286 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=5202 Загл. с экрана.

- 3. Латыев, С.М. Конструирование точных (оптических) приборов [Электронный ресурс] : учебное пособие. Электрон. дан. СПб. : Лань, 2015. 555 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=60655 Загл. с экрана.
- 4. Акиньшин, В.С. Оптика [Электронный ресурс] : учебное пособие / В.С. Акиньшин, Н.Л. Истомина, Н.В. Каленова [и др.]. Электрон. дан. СПб. : Лань, 2015. 233 с. Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=56605 Загл. с экрана.
- 5. Парамонов А. М. Системы воздухоснабжения предприятий [Электронный ресурс] : учебное пособие / Парамонов А. М., Стариков А. П. Электрон. дан. СПб. : Лань, 2011. 152 с. Режим доступа:

http://e.lanbook.com/books/element.php?pl1_id=1801 — Загл. с экрана.

3.1.2 Дополнительная литература

- 6. Пахомов И.И., Цибуля А.Б. Расчет оптических систем лазерных приборов. М.:Радио и связь, 1986. 152 с.
- 7. Лазерная техника и технология: учебное пособие для техн. вузов: В 7 кн.- М.: Высш. школа. Кн.2: Инженерные основы создания технологических лазеров / В.С. Голубев, Ф.В. Лебедев; Ред. А.Г. Григорьянц, 1988.- 175с.,ил..
- 8. Т.П. Мишура, О.Ю. Платонов Проектирование лазерных систем. Учебное пособие. ГУАП.- СПб., 2006- 98 с. Доступно на сайте: http://window.edu.ru/resource/059/45059/files/platonov_mishura.pdf
- 9. Вейко, В.П. Введение в лазерные технологии. [Электронный ресурс] / В.П. Вейко, А.А. Петров. Электрон. дан. СПб. : НИУ ИТМО, 2009. 143 с. Режим доступа: http://e.lanbook.com/book/40840 Загл. с экрана.
- 10. Либенсон, М.Н. Взаимодействие лазерного излучения с веществом (силовая оптика). Конспект лекций. Часть І. Механизмы поглощения и диссипации энергии в веществе. [Электронный ресурс] / М.Н. Либенсон, Е.Б. Яковлев, Г.Д. Шандыбина. Электрон. дан. СПб. : НИУ ИТМО, 2005. 84 с. Режим доступа: http://e.lanbook.com/book/43612 Загл. с экрана.

3.2. Информационное обеспечение учебной дисциплины

1. Нагулин К.Ю. Основы проектирования лазерных технологических комплексов [Электронный ресурс]: курс дистанц. обучения по направлению подготовки 12.03.05. «Лазерная техника и лазерные технологии» <u>ФГОС3+/КНИТУ-КАИ, Казань, 2015, - Доступ</u> по логину и паролю. URL:

https://bb.kai.ru:8443/webapps/blackboard/execute/content/blankPage?cmd=view&content_id=_175038_1&course_id=_11544_1

3.3. Кадровое обеспечение учебной дисциплины

3.3.1 Базовое образование

Высшее образование в предметной области физики, оптики или квантовой электроники /или наличие ученой степени и/или ученого звания в указанной области и /или наличие дополнительного профессионального образования— профессиональной переподготовки в области оптики и квантовой электроники /или наличие заключения экспертной комиссии о соответствии квалификации преподавателя профилю преподаваемой дисциплины.

3.3.2 ПРОФЕССИОНАЛЬНО-ПРЕДМЕТНАЯ КВАЛИФИКАЦИЯ ПРЕПОДАВАТЕЛЕЙ

Наличие научных и/или методических работ по организации или методическому обеспечению образовательной деятельности по направлению оптика, квантовая электроника, выполненных в течение трех последних лет.

3.3.3 ПЕДАГОГИЧЕСКАЯ (УЧЕБНО-МЕТОДИЧЕСКАЯ) КВАЛИФИКАЦИЯ ПРЕПОДАВАТЕЛЕЙ

К ведению дисциплины допускаются кадры, имеющие стаж научно-педагогической работы (не менее 1года); практический опыт работы в области оптики или квантовой электроники на должностях руководителей или ведущих специалистов более 3 последних лет.

Обязательное прохождение повышения квалификации (стажировки) не реже чем один раз в три года соответствующее области оптики или квантовой электроники, либо в области педагогики.