Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Институт (факультет) Институт авиации, наземного транспорта и энергетики

(наименование института, в состав которого входит кафедра, ведущая дисциплину)

Кафедра _ Материаловедения, сварки и производственной безопасности____

(наименование кафедры, ведущей дисциплину)

Кафедра Специальных технологий в образовании

Регистрационный номер 0112-460(А)22

АННОТАЦИЯ

к адаптированной рабочей программе

дисциплины (модуля)

«Физические основы исследования металлических материалов»

Индекс по учебному плану: Б1.В.ДВ.02.01

Направление подготовки: 22.03.01 «Материаловедение и технология материалов»

Квалификация<u>: бакалавр</u>

Профиль подготовки: Материаловедение и технологии новых материалов

Вид(ы) профессиональной деятельности: производственная и проектнотехнологическая, научно-исследовательская и расчетно-аналитическая

Разработчик: к.т.н., доцент Курынцев С.В.

Казань 2017 г.

РАЗДЕЛ 1. ИСХОДНЫЕ ДАННЫЕ И КОНЕЧНЫЙ РЕЗУЛЬТАТ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Цель изучения дисциплины (модуля)

Основной целью изучения дисциплины является формирование у будущих знаний методах исследования бакалавров И определения природы металлических материалов, способностей И навыков применять естественнонаучные и инженерные знания при исследовании материалов на микро- и нано уровне.

1.2 Задачи дисциплины (модуля)

Основными задачами дисциплины являются:

- изучение физических основ методов исследования металлических материалов, таких как, магнитный, электрический, вихретоковый, радиоволновой, тепловой, оптический, радиационный, акустический и проникающими веществами.
- изучения методов исследования металлических материалов с использованием ассистивных и компенсаторных информационных и коммуникационных технологий в зависимости от вида и характера ограничений здоровья;
- умение выбирать метод или способ исследования металлического материала, в зависимости от природы материала и объекта исследования.

1.3 Место дисциплины (модуля) в структуре ОП ВО

Дисциплина «Физические основы исследования металлических материалов» входит в состав дисциплин по выбору вариативного модуля учебного плана ОП.

1.4 1.4 Перечень компетенций, которые должны быть реализованы в ходе освоения дисциплины

 $O\Pi K$ -2 — способность использовать в профессиональной деятельности знания о подходах и методах получения результатов в теоретических и экспериментальных исследованиях

ОПК-3 – готовность применять фундаментальные математические, естественнонаучные и общие инженерные знания в профессиональной деятельности

ПК-6 – способностью использовать на практике современные представления о влиянии микроструктуры и наноструктуры на свойства материалов, их взаимодействии с окружающей средой, полями, частицами и излучениями

РАЗДЕЛ 2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) И ТЕХНОЛОГИЯ ЕЕ ОСВОЕНИЯ

2.1 Структура дисциплины (модуля), ее трудоемкость

Таблица 3

Распределение фонда времени по видам занятий

Наименование раздела и темы	Всего часов	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость (в часах/интерактивные часы)	Коды составляющих компетенций	Формы и вид контроля освоения составляющих компетенций (из фонда оценочных
-----------------------------	-------------	---	-------------------------------------	--

					1		
		пекции	лаб. раб.	пр. зан.	сам. раб.		
Раздел 1. Классификация и	ФОС ТК-Ітесты						
Тема 1.1. Классификация методов исследования металлических материалов	<i>мат</i> 9	3		-	6	ОПК-2.3 ОПК-2.В	Текущий контроль
Тема 1.2. Методы неразрушающего контроля металлических материалов	7	1		-	6	ОПК-2.У ОПК-3.У	Текущий контроль
Тема 1.3. Визуальные методы диагностики и контроля материалов	7	1		-	6	ОПК-2.3 ПК-6.3	Текущий контроль
Раздел 2. Физически	е мето	ды і	ісслед	овани	ія матер	риалов	ФОС ТК-2тесты
Тема 2.1. Физические свойства металлических материалов	12	1	4	-	7	ОПК-3.3 ОПК-3.В ПК-6.В	Контроль результатов лабораторных заданий
Тема 2.2. Методы исследования металлических материалов основанные на физических принципах	9	2		-	7	ОПК-3.В ПК-6.У	Отчет о выполнение самостоятельной работы
Раздел 3. Спектральн Тема 3.1. Основы спектрального анализа	14	2	4	- -	чия мато 8	ПК-6.У ПК-6.В	Контроль результатов лабораторных заданий
Тема 3.2. Технология и возможности спектрального анализа	10	2		1	8	ОПК-2.У ОПК-3.У	Отчет о выполнение самостоятельной работы
Раздел 4. Рентгенострукт элект	икроскопия,						
Тема 4.1. Рентгеноструктурный анализ	14	2	4	-	8	ОПК-2.В ОПК-3.В ПК-6.У ПК-6.В	Контроль результатов лабораторных заданий
Тема 4. 2. Сканирующая тунельная спектроскопия	12	2	2	-	8	ОПК-2.У ОПК-2.В	Контроль результатов лабораторных заданий
Тема 4.3. Электронная спектроскопия	14	2	4	-	8	ОПК-3.В ПК-6.У	Текущий контроль
Экзамен (зачет)						ОПК-2.В ОПК-3.В ПК-6.В	ФОС ПА- комплексное задание
ИТОГО:	108/9	18	18		72		

РАЗДЕЛ З ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

3.1 Учебно-методическое обеспечение дисциплины (модуля)

3.1.1 Основная литература

- 1. Быков С.Ю. Испытания материалов : учеб. пособие для студ. вузов/ С. Ю. Быков, С. А. Схиртладзе. -Старый Оскол: ТНТ, 2015. -136 с.
- 2. Старостин В.В. Материалы и методы нанотехнологий : учеб. пособие/ В. В. Старостин ; под общ. ред. Л. Н. Патрикеева. -2-е изд.. -М.: БИНОМ. Лаборатория знаний, 2017. -431 с.
- 3. Зуев Л.Б. Физические основы прочности материалов : учеб. пособие для студ. вузов/ Л. Б. Зуев, В. И. Данилов; отв.ред.: Б.Д. Аннин. -Долгопрудный: Интеллект, 2013. -376 с.

3.1.2 Дополнительная литература

- 1. Сапунов, С.В. Материаловедение. [Электронный ресурс] Электрон. дан. СПб.: Лань, 2015. 208 с. Режим доступа: http://e.lanbook.com/book/56171
- 2. Экспериментальные исследования свойств материалов при сложных термомеханических воздействиях. [Электронный ресурс] Электрон. дан. М.: Физматлит, 2012. 204 с. Режим доступа: http://e.lanbook.com/book/59763
- 3. Газенаур, Е.Г. Методы исследования материалов. [Электронный ресурс] / Е.Г. Газенаур, Л.В. Кузьмина, В.И. Крашенинин. Электрон. дан. Кемерово: КемГУ, 2013. 336 с. Режим доступа: http://e.lanbook.com/book/44317

3.1.3 Методическая литература к выполнению практических и/или лабораторных работ

- 1. Рентгеноструктурный анализ поликристаллов / Учебное пособие Э.Р. Галимов, М.М. Ганеев, К.В. Кормушин, З.Я. Халитов. Казань 2006.
- 2. Стилоскопический метод анализа металлов / Лабораторный практикум Л.М. Амирова, Т.А. Ильинкова, Э.В. Сахабиева. Казань 2000.

3.2 Информационное обеспечение дисциплины (модуля)

3.2.1 Основное информационное обеспечение

1. Курынцев С.В. Физические основы исследования металлических материалов [Электронный курс] КНИТУ – КАИ, Казань, 2016. – Доступ по логину и паролю.

URL:

https://bb.kai.ru:8443/webapps/blackboard/execute/content/blankPage?cmd=view&content_id=_175101_1&course_id=_11548_1

3.2.2 Дополнительное справочное обеспечение

1. Марочник сталей и сплавов http://www.mashin.ru/files/stranicy_iz_marochn15.pdf

3.3 Кадровое обеспечение

3.3.1 Базовое образование

Высшее образование в предметной области материаловедения и технологии материалов и /или наличие ученой степени и/или ученого звания в указанной области и /или наличие дополнительного профессионального образования — профессиональной переподготовки в области материаловедения и технологии материалов и /или наличие заключения экспертной комиссии о соответствии квалификации преподавателя профилю преподаваемой дисциплины.

3.3.2 Профессионально-предметная квалификация преподавателей

Наличие научных и/или методических работ по организации или методическому обеспечению образовательной деятельности по направлению материаловедения и технологии материалов, выполненных в течение трех последних лет.

3.3.3 Педагогическая (учебно-методическая) квалификация преподавателей

К ведению дисциплины допускаются кадры, имеющие стаж научнопедагогической работы (не менее 1 года); практический опыт работы в области материаловедения и технологии материалов на должностях руководителей или ведущих специалистов более 3 последних лет.

Обязательное прохождение повышения квалификации (стажировки) не реже чем один раз в три года соответствующее области материаловедения и технологии материалов, либо в области педагогики, а также вопросам обеспечения доступности объектов и предоставляемых услуг в сфере образования для лиц с OB3.

Педагогические кадры, участвующие в реализации дисциплины, должны быть ознакомлены с психолого-физическими особенностями обучающихся лиц с ОВЗ, чтобы учитывать их при организации образовательного процесса; должны владеть педагогическими технологиями инклюзивного обучения и методами их использования в работе с инклюзивными группами обучающихся.