Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Институт **Авиации, наземного транспорта и энергетики** Кафедра **Производство летательных аппаратов**

АННОТАЦИЯ

к рабочей программе

«Основы теории тепловых процессов»

Индекс по учебному плану: Б1.В.11

Направление подготовки: 24.03.04 «Авиастроение»

Квалификация: бакалавр

Профиль подготовки: Самолетостроение

Технология производства самолетов

Вертолетостроение

Легкие, сверхлегкие ЛА

Вид(ы) профессиональной деятельности:

Проектно-конструкторская

Производственно-технологическая

Разработчик: профессор кафедры ТиЭМ, д.т.н. С.Э. Тарасевич

РАЗДЕЛ 1. ИСХОДНЫЕ ДАННЫЕ И КОНЕЧНЫЙ РЕЗУЛЬТАТ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1. Цель изучения дисциплины:

Цель изучения дисциплины «Основы теории тепловых процессов »: Знание теоретических основ тепловых процессов, имеющих место в двигателях летательных аппаратов, а также при эксплуатации технологического оборудования и систем кондиционирования воздуха.

Уметь выполнять расчет параметров термодинамических процессов; выполнять тепловой расчет теплообменного аппарата; проводить опытные работы, связанные с измерением температуры, расхода и давления. Дисциплина нацелена на формирование профессиональных компетенций ОК-5, ОПК-10 и ПК-6 выпускника согласно компетенциям бакалавра по направлению подготовки 24.03.04 «Авиастроение»

1.2. Задачи дисциплины:

- Задача изучения дисциплины: получить знания о физической сущности и закономерностях преобразования энергии, происходящих в различных устройствах,
- иметь представление о механизмах и явлениях, связанных с теплообменом,
- знать основы теории теплопередачи, расчета температурных полей конструкций, а также методы расчета систем охлаждения и средств тепловой защиты.

1.3. Место дисциплины в структуре ОП ВО

Дисциплина закладывает знания, необходимые для освоения последующих дисциплин, связанных с изучением рабочих процессов двигателя.

При изучении дисциплины используются знания, полученные студентом при изучении предшествующих дисциплин математического, естественнонаучного и профессионального цикла.

1.4. Перечень компетенций, которые должны быть реализованы в ходе освоения дисциплины

В ходе освоения дисциплины должны быть реализованы компетенции: ОК-5 - способность к саморазвитию, повышению своей квалификации и мастерства;

ОПК-10- способность владеть навыками математического моделирования процессов и объектов на базе стандартных пакетов исследований;

ПК-6 – способность к организации рабочих мест, их техническому оснащению и размещению на них технологического оборудования.

РАЗДЕЛ 2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) И ТЕХНОЛОГИЯ ЕЕ ОСВОЕНИЯ

2.1 Структура дисциплины, ее трудоемкость

Таблица 1. Распределение фонда времени по видам занятий

Наименование раздела и темы	Всего часов	деятс самос Т] часа	рудоем іх/инте час 9 2 9 2 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	ги, вкл ьную р нтов и кость (рактив сы)	сам. работу в в в в в в в в в в в в в в в в в в в	Коды составляющ их компетенци й	Формы и вид контроля освоения составляющих компетенций (из фонда оценочных средств)
Раздел 1. Основные поня	ФОС ТК-1						
Понятие об энергии, ее видах и свойствах. Термодинамические процессы. Газовые и парогазовые смеси.	8	2	4	0	2	OK-5 (3) OK-5(3, y, b)	Отчет по лаб.раб.
Раздел 2. Первый и	второі	й закон	термо	динамі	ики		ФОС ТК-1
Первый закон термодинамики. Энтальпия вещества. Второй закон термодинамики. Энтропия	4	2		0	2	OK-5(3,y) OK-5(3,y	Устный опрос.
Раздел 3. Термодинамика газовы:	х пото	ков и ц	иклы д	вигате	лей вн	утреннего	ФОС ТК-1
	сгоран	RИИ				Ī	
Течение газа через сопла и диффузоры. Принцип действия и классификация реактивных двигателей. Рабочий процесс в компрессоре.	8	2	4	0	2	OK-5(3) OK-5(3, y, в) OK-5(3,y) ПК-6(3, y, в)	Устный опрос. Отчет по лаб.раб.
Раздел 4. Основные пон	ятия и	законь	і теори	и тепл	ообмен	на	ФОС ТК-2
Элементарные и сложные виды теплообмена. Основные понятия и определения. Законы теплообмена.	4	2	0	0	2	OK-5(3) OK-5(3) OK-5(3,y)	Устный опрос
Раздел 5. Математическая формул те	ировка еплооб		молек	улярно	го и кс	онвективного	ФОС ТК-2
Система дифференциальных уравнений описывающих процесс. Краевые условия (условия однозначности). Основы теории подобия физических явлений.		3	0	0	3	ОК-5(3), ОПК- 10(3,y,в) ОК-5(3,y,в), ОПК- 10(3,y,в), ОК-5(3,y,в), ОПК-10(3,)	Устный опрос
Раздел 6. Теплопроводность и теплоп	переда режи		стацио	нарног	и и нес	тационарном	ФОС ТК-2
Теплопроводность при стационарном режиме. Расчетные соотношения для плоской и цилиндрической стенок.		2	5	0	2	ОК-5(3,y,в) ОПК-10(3), ОК-5 (3,y) ОПК- 10(3,y,в)	Устный опрос Отчет по лаб.раб.

Раздел 7. Теплоотдача при свободно	ФОС ТК-3						
Теплоотдача и методы ее исследования. Теплоотдача при свободной конвекции.	11	3	5	0	3	OK-5(3,y,B) OK-5(3,y)	Устный опрос Отчет по лаб.раб.
Раздел 8. Тег	ФОС ТК-3						
Теория и основные законы лучистого теплообмена. Теплообмен излучением между твердыми телами в прозрачной среде.	4	2			2	OK-5(3) OK-5(3,y,)	Устный опрос
Экзамен (зачет)	18				18		ФОС ПА
ИТОГО:	72	18	18	0	36		

РАЗДЕЛ З ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

3.1 Учебно-методическое обеспечение дисциплины

3.1.1 Основная литература

- 1. Термодинамика: учебник для студентов вузов / М.Г. Шатров и др. Под ред. М.Г. Шатрова М.: Академия, 2011. 288 с.
- 2. Александров Н. Е., Богданов А. И., Костин К. И., Кукис В. С., Олюнина Л. А., Прокопенко Н. И., Сакович А. И. Основы теории тепловых процессов и машин : в 2 ч. Ч. II 4-е изд. Москва: БИНОМ. Лаборатория знаний 2012 г.— 571 с. Электронное издание. ISBN 978-5-9963-0834-7. Режим доступа: http://ibooks.ru/reading.php?productid=335273
- 3. Александров Н. Е., Богданов А. И., Костин К. И., Кукис В. С., Олюнина Л. А., Прокопенко Н. И., Сакович А. И. Основы теории тепловых процессов и машин: в 2 ч. Ч. І 4-е изд. Москва: БИНОМ. Лаборатория знаний 2012 г.— 560 с. Электронное издание. ISBN 978-5-9963-0833-0. Режим доступа: http://ibooks.ru/reading.php?productid=335272

3.1.2 Дополнительная литература

- 1. Теплотехника: Учеб. для втузов/А.М. Архаров и др.; под общ. ред. А.М. Архарова, В.Н. Афанасьева.- 2-е изд., перераб и доп.-М.: Изд-во МГТУ Баумана, 2004 712 с. (В библ. 20 экз.)
- 3. Мухачев Г.А., Щукин В.К. Термодинамика и теплопередача: Учеб. для авиац. вузов.- 3-е изд., перераб. М.:Высш.шк.,1991.- 480 с. (В библ. 483 экз.)

Исаев С.И. Термодинамика: Учеб. для машиностроит. спец. вузов.- 3-е изд., перераб. и доп. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2000.- 416 с. (В библ. 10 экз.)

- 2. Сборник задач по технической термодинамике/ Т.Н.Андрианова, Б.В. Дзампов, В.Н. Зубарев и др.- 4-е изд., перераб. и доп. М.: Изд-во МЭИ, 2000. 356 с. (В библ. 10 экз.)
- 3.Болгарский А.В., Голдобеев В.И., Идиатуллин Н.С., Толкачев Д.Ф. Сборник задач по термодинамике и теплопередаче.- М.: Высшая школа, 1972.- 304 с. (В библ. 47 экз.)
- 4. Резников А.Н., Резников Л.А. Тепловые процессы в технологических системах. М.: Машиностроение, 1990. 288 с. (В библ. 8 экз.)

3.1.3 Методическая литература к выполнению практических и/или лабораторных работ

- 1. Арсланова С.Н., Голдобеев В.И., Дресвянников Ф.Н., Тонконог В.Г. Термодинамика: Термические и калорические свойства веществ: Лабораторный практикум. Казань: Изд-во КГТУ, 2006.-70 с. (В библ. 89 экз.)
- 2. Арсланова С.Н., Голдобеев В.И., Дресвянников Ф.Н. Термодинамика: Процессы в машинах и аппаратах: Лабораторный практикум. Казань: Изд-во КГТУ, 2006. 108 с. (В библ. 108 экз.)
- 3. Попов И.А., Филин В.А., Шигапов А.Б. Исследование процессов конвективного и радиационного теплообмена: Лабораторный практикум. Под ред. Ю.Ф.Гортышова. Казань: Изд-во Казан. гос. техн. ун-та, 2001. (В библ. 91

3.1.4 Основное информационное обеспечение

- 1. Гуреев, Виктор Михайлович. Теплопередача в промышленных аппаратах: учеб. пособие / В.М. Гуреев, С.Я. Коханова; под ред. проф. Ю.Ф. Гортышова, 2007. 264 с., e-library.kai.ru
- 2. С.Э. Тарасевич. Основы теории тепловых процессов [Электронный ресурс]: курс дистанц. обучения по направлению подготовки 24.03.04 «Авиастроение» ФГОС 3+/КНИТУ-КАИ, Казань, 2017.- Доступ по логину и паролю. URL:

https://bb.kai.ru:8443/webapps/blackboard/execute/content/blankPage?cmd=view&c ontent_id=_26867_1&course_id=_4202_1

3.1.5 Дополнительное справочное обеспечение

- 1. Электронная библиотека КНИТУ-КАИ (полнотексты изданий университета) Правообладатель НТБ КНИТУ-КАИ. http://e-library.kai.ru/dsweb/HomePage
- 2. Интернет- ресурсы в свободном доступе: Научная электронная библиотека eLIBRARY.RU http://elibrary.ru/ Компания ООО «РУНЭБ». Контракт № 154 ЕП от 21.06.12 (архив на 10 лет) Лицензионное соглашение №735 от 05.09.2003 (бессрочно)/

3.2. Кадровое обеспечение

3.2.1 Базовое образование

Высшее области образование В предметной Теплотехники наличие ученой степени и/или ученого звания в теплоэнергетики и /или указанной области и /или наличие дополнительного профессионального образования – профессиональной переподготовки в области Теплотехники и теплоэнергетики и /или наличие заключения экспертной комиссии соответствии квалификации профилю преподавателя преподаваемой дисциплины.

3.2.2 Профессионально-предметная квалификация преподавателей

Наличие научных и/или методических работ по организации или методическому обеспечению образовательной деятельности по направлению Теплотехники и теплоэнергетики, выполненных в течение трех последних лет.

3.2.3 Педагогическая (учебно-методическая) квалификация преподавателей

К ведению дисциплины допускаются кадры, имеющие стаж научнопедагогической работы (не менее 1 года); практический опыт работы в области Теплотехники и теплоэнергетики на должностях руководителей или ведущих специалистов более 3 последних лет.

Обязательное прохождение повышения квалификации (стажировки) не реже чем один раз в три года соответствующее области Теплотехники и теплоэнергетики, либо в области педагогики.