Министерство образования и науки Российской Федерации

федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Институт <u>авиации, наземного транспорта и энергетики</u> Кафедра <u>теплотехники и энергетического машиностроения</u>

АННОТАЦИЯ

к рабочей программе дисциплины

«Термодинамика энергосистем»

Индекс по учебному плану: Б1.В.12

Направление подготовки: 13.03.01 «Теплоэнергетика и теплотехника»

Квалификация: бакалавр

Профиль подготовки: «Энергетика теплотехнологий»

Вид(ы) профессиональной деятельности: <u>расчетно-проектная и проектно-конструкторская;</u> научно-исследовательская; производственно-технологическая

Разработчик: к.т.н., доцент кафедры ТиЭМ Арсланова С.Н.

РАЗДЕЛ 1 ИСХОДНЫЕ ДАННЫЕ И КОНЕЧНЫЙ РЕЗУЛЬТАТ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Цель изучения дисциплины (модуля)

Овладение теоретическими основами и методами расчета процессов преобразования энергии в энергетических системах различного назначения.

1.2 Задачи дисциплины (модуля)

- получить знания о принципе действия, рабочих процессах, показателях и характеристиках тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющегося при сжигании топлива тепла:
- получить знания об анализе и расчете процессов тепловых машин, в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре;
- получить знания об анализе и расчете процессов совместного или комбинированного производства работы и получения тепла (или холода) для технологических или бытовых нужд;
- получить знания об анализе и расчете процессов трансформации тепла от одной температуры к другой,
- получить знания об основных методах расчета свойств химически реагирующих систем.

1.3 Место дисциплины (модуля) в структуре ОП ВО

Дисциплина «Термодинамика энергосистем» входит в состав Вариативного модуля Блока 1.

1.4 Перечень компетенций, которые должны быть реализованы в ходе освоения дисциплины

В ходе освоения дисциплины «Термодинамика энергосистем» должна быть реализована компетенция:

ОПК-2 - способность демонстрировать базовые знания в области естественнонаучных дисциплин, готовность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности; применять для их разрешения основные законы естествознания

РАЗДЕЛ 2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ) И ТЕХНОЛОГИЯ ЕЕ ОСВОЕНИЯ

2.1 Структура дисциплины, ее трудоемкость

Таблица 1 Распределение фонда времени по видам занятий

Наименование раздела и темы		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость (в часах/интерактивные часы)				Коды составляющих компетенций	Формы и вид контроля освоения составляющих компетенций (из фонда оценочных
		лекции	лаб. раб.	пр. зан.	сам.раб.	Код	средств)
Раздел 1. ЦИКЛ	ФОС ТК-1тест						
Тема 1.1Циклы поршневых двигателей	22	4	5	4	9	ОПК-2.3, ОПК-2.У	Отчет о выполнении лабораторной работы
Тема 1.2Циклы газотурбинных установок и реактивных двигателей	18	4		10	4	ОПК-2.3, ОПК-2.У	Выполнение расчетного задания
Раздел 2. ЦИКЛЫ ПАРОСИЛО	ФОС ТК-2тест						
Тема 2.1 Водяной пар как реальное рабочее тело	6	2		2	2	ОПК-2.3, ОПК-2.В	Выполнение расчетного задания
Тема 2.2 Циклы паросиловых установок	24	6	4	4	10	ОПК-2.3, ОПК-2.У	Отчет о выполнении лабораторной работы
Тема 2.3 Циклы холодильных машин	12	4		4	4	ОПК-2.3, ОПК-2.У	Выполнение расчетного задания
Раздел 3. ОСНОВЫ ТЕРМОДИ П	ФОС ТК-3тест						
Тема 3.1Эксергетический анализ тепловых процессов	12	4		4	4	ОПК-2.3, ОПК-2.В	Выполнение расчетного задания
Раздел 4. ЗАКОНЫ ТЕРМ	ФОС ТК-4тест						

ХИМИЧЕ							
Тема 4.1Основные положения и определения химической термодинамики	22	4	5	4	9	ОПК-2.3	Отчет о выполнении лабораторной работы
Тема 4.2Термодинамическое учение о равновесии	20	4	4	4	8	ОПК-2.У, ОПК-2.В	Отчет о выполнении лабораторной работы
Тема 4.3Третье начало термодинамики	8	4			4	ОПК-2.3	Текущий контроль
Курсовая работа	36				36	ОПК-2.3, ОПК-2.У, ОПК-2.В	ФОС ПА-1 защита курсовой работы комплексное задание
Экзамен	36				36	ОПК-2.3, ОПК-2.У, ОПК-2.В	ФОС ПА-2 комплексное задание
ИТОГО:	216	36	18	36	126		

РАЗДЕЛ З ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

3.1 Учебно-методическое обеспечение дисциплины

3.1.1 Основная литература

- 1. Сахин В.В. Термодинамика энергетических систем: учебное пособие для вузов: Книга 1: Термодинамика гомогенных и гетерогенных систем. [Электронный ресурс] Электрон.дан. СПб.: БГТУ "Военмех" им. Д.Ф. Устинова, 2014. 219 с. Режим доступа: http://e.lanbook.com/book/63701.
- 2. Сахин В.В. Термодинамика энергетических систем: учебное пособие для вузов: Книга 2: Техническая термодинамика. [Электронный ресурс] Электрон.дан. СПб.: БГТУ "Военмех" им. Д.Ф. Устинова, 2014. 226 с. Режим доступа: http://e.lanbook.com/book/63702.
- 3. Буданов, В.В. Химическая термодинамика. [Электронный ресурс] / В.В. Буданов, А.И. Максимов. Электрон.дан. СПб. : Лань, 2016. 320 с. Режим доступа: http://e.lanbook.com/book/79323.

3.1.2 Дополнительная литература

- 1. Термодинамика: в 2-х ч. : учеб.пособие для студ. вузов / В. П. Бурдаков [и др.]. М.: Дрофа. Ч.1: Основной курс. 2009. 479 с.
- 2. Термодинамика: в 2-х ч. : учеб.пособие для студ. вузов / В. П. Бурдаков [и др.]. М.: Дрофа Ч.2 : Специальный курс. 2009. 361 с.
- 3. Арсланова С.Н., Голдобеев В.И., Дресвянников Ф.Н., Тонконог В.Г. Термодинамика: Термические и калорические свойства веществ: Лабораторный практикум. Казань: Изд-во КГТУ, 2006.70 с.
- 4. Арсланова С.Н., Голдобеев В.И., Дресвянников Ф.Н. Термодинамика: Процессы в машинах и аппаратах: Лабораторный практикум. Казань: Изд-во КГТУ, 2006.108 с.
- 5. ГолдобеевВ.И., Арсланова С.Н. Методические указания к курсовой работе по термодинамике. Казань: Изд-во Казан.гос.техн.ун-та, 2001.- 32 с.

3.1.3 Методическая литература к выполнению практических и/или лабораторных работ

1. Техническая термодинамика: учеб.пособие для студ. вузов / В. В. Федина, А. С. Тимофеева, Т. В. Никитченко. - Старый Оскол: ТНТ, 2015. - 164 с.

3.2 Информационное обеспечение дисциплины

3.2.1 Основное информационное обеспечение

- 1. Арсланова С.Н. Термодинамика энергосистем [Электронный ресурс]: курс дистанц. обучения по направлению 13.03.01 «Теплоэнергетика и теплотехника», направление подготовки бакалавров «Теплоэнергетика и телотехника» ФГОС3+(ИАНТЭ)/ КНИТУ-КАИ, Казань, 2016.- Доступ по логину и паролю. URL: https://bb.kai.ru:8443/webapps/blackboard/execute/content/blankPage?cmd=view&content_id = 138547 1&course id= 10841 1
- 2. Научная электронная библиотека eLIBRARY.RU http://elibrary.ru/ Компания ООО «РУНЭБ». Контракт № 154 ЕП от 21.06.12 (архив на 10 лет) Лицензионное соглашение №735 от 05.09.2003 (бессрочно)
- 3. Ресурсы информационно-телекоммуникационной сети «Интернет Современные профессиональные базы данных и информационные справочные системы (подлежат ежегодному обновлению)
- Электронная библиотека КНИТУ-КАИ (полнотексты изданий университета) Правообладатель НТБ КНИТУ-КАИ http://e-library.kai.ru/dsweb/HomePage
- База данных Scopus. Сублицензионный договор № Scopus /304 от 08.08.2017 ГПНТБ России по обеспечению лицензионного доступа к базе данных «Scopus»
- Информационная система Роспатента http://www1.fips.ru. Ресурсы открытого доступа (открытые базы данных).
- Информационная система Консультант плюс http://www.consultant.ru/. Контракт от 22 марта 2017 г. №005.

- 4. Информационные технологии, лицензионное программное обеспечение (подлежит ежегодному обновлению)
- Доступ с гарантированной полосой пропускания к научно-образовательным сетям РФ RUNNET, сети SENET-Tatarstan и международным научно-образовательным сетям.
- Антивирусная программа Kaspersky Endpoint Security сетевая лицензия № 17E0-170130-112427-113-367
- Лицензионная операционная система Microsoft Office 7 Professional.
- Лицензионная операционная система Windows 7 Professional.

3.3 Кадровое обеспечение

3.3.1 Базовое образование

Высшее образование в предметной области теплоэнергетики и теплотехники и /или наличие ученой степени и/или ученого звания в указанной области и /или наличие дополнительного профессионального образования — профессиональной переподготовки в области теплоэнергетики и теплотехникии /или наличие заключения экспертной комиссии о соответствии квалификации преподавателя профилю преподаваемой дисциплины.