Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ» (КНИТУ-КАИ)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.З.1 СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНЯЯ В ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРАХ

Направление подготовки	12.06.01 - ФОТОНИКА, ПРИБОРОСТРОЕНИЕ, ОПТИЧЕСКИЕ И БИОТЕХНИЧЕСКИЕ СИСТЕМЫ И ТЕХНОЛОГИИ
Профиль (направленность)	05.11.07 – ОПТИЧЕСКИЕ И ОПТИКО-ЭЛЕКТРОННЫЕ ПРИБОРЫ И КОМПЛЕКСЫ
Квалификация выпускника	Исследователь. Преподаватель-исследователь
Форма обучения	очная, заочная
Выпускающая кафедра	ОПТИКО-ЭЛЕКТРОННЫХ СИСТЕМ
Кафедра-разработчик рабочей програ	аммы ОПТИКО-ЭЛЕКТРОННЫХ СИСТЕМ

Год обуче- ния	Трудоем- кость час.	Лекций, час.	Практич. занятий, час.	Лаборат. работ, час.	СРС, час.	Форма контроля (экз., час./зачет)
3	108	27		27	54	Зачет
Итого	108	27		27	54	Зачет

Программа разработана в соответствии с требованиями Федерального закона от 27.12.2012 г. № 273-ФЗ «Об образовании в Российской Федерации», ФГОС ВО по направлению подготовки 12.06.01 — Фотоника, приборостроение, оптические и биотехнические системы и технологии, Положением «О порядке организации и осуществления образовательной деятельности по образовательным программам высшего образования — программам подготовки научно-педагогических кадров в аспирантуре» федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ» (КНИТУ-КАИ) и учебного плана направления подготовки 12.06.01 — Фотоника, приборостроение, оптические и биотехнические системы и технологии, направленность (профиль) 05.11.07 — Оптические и оптико-электронные приборы и комплексы.

Составитель рабочей программы:

канд. техн. наук, доцент

(подпись) 11.06.2015

(∂ama)

Карпов А.И.

Рабочая программа утверждена на заседании кафедры:

ОПТИКО-ЭЛЕКТРОННЫХ СИСТЕМ

Протокол № 10 от 17.06.2015 г.

зав. кафедрой - разработчика

(подпись)

Раковец С.В.

17.06.2015 г.

Удата)

Декан факультета

(на котором осуществляется обучение)

(подпись)

Ференец А.В.

19.06.2015г.

(dama)

СОГЛАСОВАНО:

Зав. выпускающей кафедрой

(подпись)

17.06.2015 г.

(дата)

Раковец С.В. (ФИО)

1. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Таблица 1. Перечень планируемых результатов обучения по дисциплине

	ые результаты освоения ОПОП ии), достижение которых обеспечивает дисциплина	Перечень планируемых результатов обучения по дисциплине
Коды компе- тенции	Содержание компетенций	Знать: Уметь: Владеть:
ОПК-3	владение методикой разработки математических и физических моделей исследуемых процессов, явлений и объектов, относящихся к профессиональной сфере	Знать: задачи моделирования процессов распространения излучения в оптических волокнах и элементов волоконной оптики с целью анализа и оптимизации их параметров Уметь: самостоятельно осуществлять моделирование процессов распространения излучения в оптических волокнах и элементов волоконной оптики с целью анализа и оптимизации их параметров Владеть: методами и средствами математического и компьютерного моделирования процессов распространения излучения в оптических волокнах и элементов волоконной оптики с целью анализа и оптимизации их параметров
ОПК-4	способность планировать и проводить эксперименты, обрабатывать и анализировать их результаты	Знать: приёмы, постановки целей и задач научных экспериментальных исследований; методики проведения экспериментальных исследований, обработки и анализа результатов Уметь: ставить цели и определять задачи при организации научного эксперимента; планировать проведение научных экспериментов; выбирать и составлять план эксперимента; использовать стандартные пакеты и средства автоматизированного проектирования при проведении эксперимента; анализировать результаты эксперимента, включая построение математических моделей объекта исследований, определение оптимальных условий, поиск экстремума функции; грамотно представлять результаты эксперимента Владеть: опытом организации и проведения эксперимента Владеть: опытом организации и проведения экспериментальных исследований в области волоконной оптики (по теме диссертации); презентации результатов научного исследования и ведения научной дискуссии.

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина Системы автоматического управления в оптико-электронных приборах относится к вариативной части (дисциплины по выбору) блока 1 учебного плана.

3. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

3.1. Структура дисциплины

Общая трудоемкость (объем) дисциплины составляет 3 зачетных единицы (ЗЕТ), 108 академических часа.

Объём дисциплины по видам учебных занятий

Таблица 2.

Вид учебной работы	Общая трудоемкость		Курс 3,	семестр 6
	в час	в ЗЕ	в час	в ЗЕ
Общая трудоемкость дисциплины	108	3	108	3
Аудиторные занятия	54	1,5	54	1,5
Лекции	27	0,75	27	0,75
Практические (ПЗ)				
Лабораторные работы (ЛР)	27	0,75	27	0,75
Самостоятельная работа (всего)	54	1,5	54	1,5
В том числе: Проработка учебного материала Подготовка реферата	36 18	1 0,5	36 18	1 0,5
Подготовка к промежуточной аттестации				
Вид аттестации			3a	чет

Распределение учебной нагрузки по разделам дисциплины

Таблица 3.

				цы учеб	бной на	грузки	иих	
ой			трудоемкость, часы					
№ модуля образовательной программы	№ раздела	Наименование раздела дисциплины	Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа	Всего часов	
	1.1	Классификация систем управления	2			0,5	2.5	
1	1.2	Особенности стабилизации изображения бортовых оптико-электронных приборов (ОЭП)	2			0,5	2,5	
	1.3	Методика разработки систем автоматические управления (САУ) ОЭП	2		4	1	7	
	1.4	Системы виброзащиты	2		8	10	20	

						<u> </u>
	2.1	Автомат регулировки экспозиции.	4		4	8
	2.2	Фотоконтрольный прибор			6	6
	2.3	Электромеханическая система линейной компенсации сдвига изображения (СКСИ).	2		6	15
2	2.4	Системы автоматической фокусировки (САФ)	2		2	4
	2.5	Бортовые САУ ОЭП	4	15	8	22
	2.6	Современные оптико-электронные системы сканирования и слежения	4		10	12
	2.7	Лазерные локационные системы сопровождения	3		6	9
		ИТОГО:	27	27	54	108

3.2. Содержание дисциплины

Лекционный курс

Таблица 4.

№ лекции	Но- мер раз- дела	Тема лекции и перечень дидактических единиц	Трудоем- кость, часов
1	1.1	Тема 1.1. Классификация систем управления. Системы виброзащиты и демпфирования. САУ в пространстве. САУ качеством изображения. САУ адаптивной оптики.	2
2	1.2	Тема 1.2. Особенности стабилизации изображения бортовых оптических приборов. Точность стабилизации и качество изображения. Возмущения: низкочастотные и вибрационные.	2
3	1.3	Тема 1.3. Методика разработки САУ ОЭП . Этапы разработки. Критерии качества управления ОЭП. Итерационная процедура синтеза САУ. Допустимые динамические погрешности и их расчет. Частота Найквиста.	2
4	1.4	Тема 1.4. Системы виброзащиты и демпфирования (СВД). Возмущения. Активные и пассивные СДВ. Критерии вибро- защиты ОЭП. Динамические и математические модели. Модели с двумя и более степенями свободы. Амплитудно-частотные характеристики. Моделирование СВД. Методика расчета и испытаний СВД.	2
5,6	2.1	Тема 2.1. Автомат регулировки экспозиции. Функциональная и структурная схемы. Принцип работы. Уравнения движения. Линеаризация нелинейных уравнений. Оценка устойчивости, динамических погрешностей и качество переходных процессов. Моделирование нелинейной системы.	4
7	2.3	Тема 2.2. Электромеханическая система линейной компенсации сдвига изображения аэрофотоаппарата. Принцип работы. Оценка допуска на точность стабилизации скорости движения пленки. Функциональная и структурная схемы. Уравнения движения. Синтез регулятора исходя из условий устойчивости, динамических погрешностей и качества переходных процессов. Моделирование системы.	2

8	2.4	Тема 2.3. Системы автоматической фокусировки. Оценка допуска на точность фокусировки. Принцип работы. Функциональные схемы. Математическая модель. Синтез регулятора частотным методом, исходя из условий устойчивости, динамических погрешностей и качества переходных процессов. Моделирование системы.	2
9,10	2.5	Тема 2.4. Бортовые САУ ОЭП. Принцип работы. Функциональная схема. Оценка допуска на точность управления. Математическая модель. Структурная схема. Анализ и синтез регулятора изолированных каналов управления частотным методом, исходя из оценки динамических свойств (инвариантности, устойчивости, требуемой динамической погрешности, и качества регулирования) САУ ОЭП. Оценка динамики управления ОЭП при помощи современных средств моделирования.	4
11,12	2.6	Тема 2.5. Современные бортовые ОЭП сканирования и слежения. Траектории сканирования. Принцип работы оптико-электронного координатора цели. Функциональная схема. Математическая модель. Структурная схема. Анализ и синтез регулятора изолированных каналов управления частотным методом, исходя из оценки динамических свойств и слабости перекрестных связей САУ ОЭП. Моделирование системы. Оценка динамики многосвязных САУ ОЭП	4
13	2.7	Тема 2.5. Лазерные локационные системы сопровождения. Принцип работы. Функциональная схема. Математическая модель. Структурная схема. Анализ и синтез регулятора изолированных каналов управления частотным методом, исходя из оценки динамических свойств системы и обеспечения инвариантности, используя экстраполятор. Модель экстраполятора. Оценка динамики управления, используя современные средства моделирования.	3
		Итого:	27

Лабораторные работы

Таблица 5.

_		T	raomina 5.
№ за-	Номер	Наименование лабораторной работы и перечень	Трудоем-
РИТКН	раздела	дидактических единиц	кость, часов
1	1.3	Изучение методики разработки САУ ОЭП. Расчет допустимой динамической погрешности и параметров САУ для занных вариантов. Компьютерный эксперимент.	4
2,3	1.4	Расчет и моделирование системы виброзащиты и демпфирования. Расчеты и компьютерный эксперимент.	8
4,5,6	2.5	Расчет и моделирование бортовой САУ ОЭП. Моделирование в среде MatLab, MathCad для заданного варианта Компьютерный эксперимент.	12
7	1.3,1.4, 2.5	Итоговое занятие. Анализ расчетов и компьютерных экспериментов. Выводы по проделанной исследовательской работе.	3
		итого:	27

Самостоятельная работа аспиранта

Таблица 6.

	1	Проработка конспекта лекций	9
	2	Работа с информационными ресурсами	6
1.1-1.4,	3	Изучение материала для самостоятельной проработки	27
2.1-2.7	4	Выполнение заданий по предварительной подготовке к лабораторным работам	4
	5	Написание реферата по дисциплине	8
		ВСЕГО ЧАСОВ:	54

4. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Самостоятельная работа аспиранта по курсу «Системы автоматического управления в оптико-электронных приборах» представляет собой

- углубленное изучение тем курса лекций;
- подготовку и выполнение предварительных заданий для лабораторных исследований;
- реферативный обзор вопросов, выносимых на самостоятельную проработку;
- написание реферата по конкретной проблеме бортовых систем автоматического управления оптико-электронными приборами.

Для углубленного изучения тем курса рекомендуется воспользоваться конспектами лекций и учебниками, представленными в списке основной и дополнительной литературы, информационными ресурсами сети Интернет, онлайн каталогам научной периодики. Для лучшего освоения материала аспирант имеет возможность проверить свои знания по вопросам для самопроверки, представленным в Приложении № 4. Ссылки на Интернет-доступ к предлагаемым текстам приведены в списке дополнительной литературы.

На самостоятельную проработку выносятся вопросы по каждой лекции по усмотрению преподавателя. Предварительные задания для выполнения лабораторных исследований указываются в методических указаниях к выполнению лабораторных работ. При этом подразумевается, что аспирант владеет программными пакетами и средами MatLab, MathCad, программа обработки результатов измерений «Sirius-W», Квант-СП. В случае слабого уровня знаний по указанным программным пакетам и средам необходимо их освоить самостоятельно или под руководством преподавателя. По рекомендации и под руководством преподавателя аспирант составляет реферативный обзор предложенных вопросов по литературе, имеющейся в свободном Интернет-доступе и на кафедре оптико-электронных систем:

- 1. .Карпов А.И. Системы управления оптико-электронных приборов.. Учебное пособие для студентов спец. 200400.68 . КГТУ им. А.Н. Туполева, 2012.
- 2. Барский А.Г. Оптико-электронные следящие системы :учебное пособие М. Университетская книга; Логос, 2009.-200с.
- 3. Карпов А.И., Стрежнев В.А. Динамика и методы расчета систем автоматического управления стратосферных обсерваторий. Идентификация, декомпозиция, синтез. Монография. Казань. Издательство КГТУ им.А.Н.Туполева..2008 .175с. (20экз.)
- 4. Бессекерский В.А., Попов Е.П.. Теория автоматического регулирования, М. Наука, 2009 (48 экз).
- 5. Карпов А.И. Системы управления оптико-электронных систем. Конспект лекций. Казань, 2000. Издательство КГТУ им. А.Н. Туполева –122 экз.
- 6. Карпов А.И Исследование динамики и идентификация параметров системы автоматического регулирования экспозиции аэрофотоаппарата. Методические указания к лабораторным работам для студентов каф. ОЭС КГТУ им. А.Н. Туполева, 2012. (12экз.)
- 7. Карпов А.И., Михалицын А.В. Исследование динамики системы амортизации оптического прибора с применением пакета прикладных программ Simulink 4.0 MatLAB 6.5. Методические указания к лабораторным работам для студентов каф. ОЭС КГТУ им. А.Н. Туполева, 2012.- (12экз).
- 8. Карпов А.И. Исследование динамики системы амортизации оптического прибора Методические указания к лабораторным работам по курсу «Системы управления оптико-электронными приборами» Казань. КАИ. 1992- (56 экз).

 Тарасов В.В. Якушенков Ю.Г. Инфракрасные системы «смотрящего типа».М...Логос,2004 444с. 26эк

- 9. А.А. Бабаев. Амортизация, демпфирование и стабилизация бортовых оптических приборов. Л. Машиностроение, 1984, 232с. 18экз. (КГТУ 4 экз., каф. ОЭС 2 экз., ГИПО-2 экз,КОМЗ-3 экз.)
- 10. Молин Д.А. Методика и алгоритмы имитационного моделирования и рационального выбора конструктивных параметров бортовой оптико-электронной системы кругового обзора и слежения: диссертация. . канд. техн. наук:05.11.07 / Д.А. Молин.- Казань, 2011.- 28 (1 шт)

Реферат по дифракционной оптике должен продемонстрировать способность соискателя самостоятельно анализировать и интерпретировать прочитанную литературу, идентифицировать конкретную проблему, проводить анализ путей ее решения, предложить их варианты и выбрать оптимальный.

Тема реферата (ориентировочный список тем представлен в *Приложении* № 5) предварительно согласовывается с научным руководителем аспиранта и утверждается заведующим кафедрой оптико-электронных систем.

Объем реферата — 1 авторский лист или 20-30 страниц машинописного текста 14 шрифтом через 1,5 интервала. Оформление реферата предполагает наличие: титула (Образец оформления титульного листа реферата приводится в *Приложении* \mathcal{N} 6), оглавления; введения; основной части: анализа состояния проблемы, путей ее решения, выбора оптимального решения, оценок его перспективности; заключения; списка использованной литературы.

План (содержание или оглавление) реферата размещается на 2 странице. На английском языке дублируются титульный лист, введение и заключение. Список использованной литературы должен включать в себя не менее 5-7 источников на русском и 5-7 источников на английском языке и оформляется по установленным стандартам:

- 1. ГОСТ 7.1-2003. Библиографическая запись. Библиографическое описание. Общие требования и правила составления.
- 2. ГОСТ 7.82-2001. Библиографическая запись. Библиографическое описание электронных ресурсов: Общие требования и правила составления.

Первичную экспертизу готового реферата проводит научный руководитель аспиранта. Он ставит свою подпись на титульном листе.

Только после сдачи реферата аспирант допускается для сдачи зачета.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования и развития требуемых компетенций обучающихся.

В рамках учебных курсов предусмотрены встречи с представителями российских и зарубежных компаний, компетентных в области динамики и управления ОЭП, участие аспирантов в работе международных и всероссийских научных конференций, проводимых на базе КНИТУ-КАИ.

Основная часть лекций проходит в традиционной форме.

К интерактивным технологиям проведения лекций относятся лекция-беседа, лекция с элементами проблемной ситуации, лекция-встреча с представителем российской научной общественности.

Лабораторные работы проводятся в интерактивной форме – работа в малых исследовательских группах, коллективное решение творческих задач.

Для внеаудиторной проработки самостоятельного задания аспирантам также предлагается кооперация в малые исследовательские группы и коллективное решение творческих задач, если позволяет тематика диссертационных работ.

Интерактивные образовательные технологии, используемые в аудиторных занятиях (если таковые предусмотрены разработчиком рабочей программы)

Таблииа 7.

Ce-	Вид и тема занятия	Используемые интерактивные	Количество
местр	(лекция, практическое занятие, лаборатор-	образовательные технологии	часов
	ная работа)		
	Лекция №1. Классификация систем управления	Лекция-беседа	
	Лекция №3. Методика разработки САУ ОЭП	Лекция-беседа	2
	Лекция №5. Автомат регулировки экспозиции	Лекция-беседа	2
	Лекция №9. Бортовые САУ ОЭП	Лекция с элементами проблемной	2
		ситуации	2
	Лекция №11. Современные оптико-электронные	Лекция с элементами проблемной	2
6	системы сканирования и слежения	ситуации	2
U	Лабораторная работа №1. Изучение методики раз-	Работа в малых исследовательских	4
	работки САУ ОЭП.	группах	'
	Лабораторная работа №2,3. Расчет и моделирова-	Работа в малых исследовательских	1
	ние системы виброзащиты и демпфирования.	группах	7
	Лабораторная работа №4,5. Расчет и моделирова-	Работа в малых исследовательских	1
	ние бортовой САУ ОЭП.	группах	7
		ВСЕГО ЧАСОВ	24

6. ФОРМЫ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1. Перечень оценочных средств для текущего контроля освоения дисциплины

Текущий контроль аспирантов производится в дискретные временные интервалы лектором и преподавателем, ведущим лабораторные работы по дисциплине в следующих формах:

- устные опросы;
- выполнение лабораторных работ;
- защита лабораторных работ;
- тестирование после окончания Модуля 1,
- тестирование после окончания темы 2.4,
- тестирование после окончания Модуля 2 или на зачете.

6.2. Состав фонда оценочных средств для проведения контроля аспирантов по дисциплине

Контроль по дисциплине проходит в форме зачета.

На зачет выносится решение задачи, связанной с *синтезом системы управления ОЭП* и одной из *задач диссертационной работы аспиранта*, выполненной путем математического или компьютерного моделирования.

(Фонд оценочных средств, перечень заданий для проведения контроля, а также методические указания для проведения контроля приводятся в *Приложении 4* к рабочей программе).

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Перечень основной и дополнительной учебной литературы

Таблица 8.

Основная литература

	Ochobian intepatypa				
№ п/п	Учебник, учебное пособие (приводится библиографическое описание учебника, учебного пособия)	Ресурс НТБ КНИТУ-КАИ	Кол-во экз.		
1	. Балоев А.А. Теория автоматического управления. Цифровые линейные системы: учеб. пособие / А.А. Балоев Казань:	Ресурс НТБ	30 шт		

			10
	Изд-во КГТУ им. А.Н. Туполева, 2011 92 с.	КНИТУ-КАИ	
2	.Карпов А.И. Системы управления оптико-электронных приборов Учебное пособие для студентов спец. 200400.68 . КГТУ им. А.Н.Туполева, 2012. Электронная версия, доступ: http://e-library.kai.ru/reader/hu/flipping/Resource-2180/275.pdf/index.html	Ресурс НТБ КНИТУ-КАИ	
3	Барский А.Г. Оптико-электронные следящие системы :учебное пособие М. Университетская книга; Логос, 2009200c.	Ресурс НТБ КНИТУ-КАИ	25

Дополнительная литература

№ п/п	Учебник, учебное пособие, монография, справочная литература (приводится библиографическое описание)	Ресурс НТБ КНИТУ-КАИ	Кол-во экз.
5	Карпов А.И., Стрежнев В.А. Динамика и методы расчета систем автоматического управления стратосферных обсерваторий. Идентификация, декомпозиция, синтез. Монография. Ка-		20
6	зань. Издательство КГТУ им.А.Н.Туполева2008 .175с. Бессекерский В.А., Попов Е.П Теория автоматического регулирования, М. Наука, 2009	Ресурс НТБ КНИТУ-КАИ	48
7	Карпов А.И. Системы управления оптико-электронных систем. Конспект лекций. Казань, 2000.Издательство КГТУ им. А.Н.Туполева .64c		122

Методические указания и материалы

№ п/п	Лабораторные практикумы, методические указания, учебнометодические пособия (приводится библиографическое описание)	Ресурс НТБ КНИТУ-КАИ	Кол-во экз.
8	7. Карпов А.И Исследование динамики и идентификация параметров системы автоматического регулирования экспозиции аэрофотоаппарата. Методические указания к лабораторным работам для студентов каф. ОЭС КГТУ им. А.Н.Туполева, 2012.	Ресурс НТБ КНИТУ-КАИ	12
9	8. Карпов А.И., Михалицын А.В. Исследование динамики системы амортизации оптического прибора с применением пакета прикладных программ Simulink 4.0 MatLAB 6.5. Методические указания к лабораторным работам для студентов		12
10	каф. ОЭС КГТУ им. А.Н.Туполева, 2012 9.КарповА.И.Исследование динамики системы амортизации оптического прибора Методические указания к лабораторным работам по курсу «Системы управления оптико-электронными приборами» Казань. КАИ. 1992		56

Интернет-источники

1. Подборка книг по управлению ОЭП Доступ: http://www.optdesign.narod.ru/book.htm

7.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет»

Интернет-ресурсы из перечня НТБ КНИТУ-КАИ

Русскоязычные:

<u>- ВИНИТИ</u>

- РОСПАТЕНТ
- eLIBRARY.RU (НЭБ Научная электронная библиотека)

Зарубежные:

- ScienceDirect (Elsevier) естественные науки, техника.
- Scopus база данных рефератов и цитирования.
- SpringerLink компьютерные науки, математика и статистика, физика.
- The American Physical Society ведущие физические журналы мира.

Интернет ресурсы ведущих научных обществ мира

- 1. Цифровая библиотека SPIE. Доступ: http://proceedings.spiedigitallibrary.org/SS/All_Proceedings.aspx.
- 2. Цифровая библиотека OSA. Доступ: https://www.osapublishing.org/osadigitalarchive.cfm/
- 3. Цифровая библиотека IEEE. Доступ: http://ieeexplore.ieee.org/Xplore/home.jsp?reload=true&/

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (при необходимости)

- 1. Чтение лекций с использованием слайд-презентаций.
- 2. Использование видеоматериалов (через Интернет).
- 3. Использование специализированных пакетов прикладных программ MatLab, MathCad.
- 4. Компьютерное тестирование.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Лекционные занятия:
 - комплект электронных презентаций/слайдов,
 - аудитория №405 кафедры Оптико-электронных систем, оснащенная презентационной техникой (проектор, экран, компьютер/ноутбук),
 - компьютер/ноутбук с выходом в Интернет для просмотра видеоматериала из сети.
- 2. Лабораторные работы:
 - аудитория №406 кафедры Оптико-электронных систем (*Лаборатория систем управления ОЭП*), оснащенная следующим оборудованием:
 - аэрофотоаппараты:
 - M-167 (с автоматической системой компенсации сдвига изображения и автоматической системой экспозиции),
 - -УА-47A
 - осциллограф: H 145 2шт, H107 1шт
 - -компьютерный класс для моделирования и расчета систем САУ ОЭП
 - 4 компьютера класса Pentium-4.
 - методические указания к лабораторным работам 1 –2,
 - -- макет космического телескопа,
 - телескоп (двух зеркальный диаметром 150 мм),
 - камера Soni для снятия процессов изображения,
 - оборудование «Имитационный стенд исследования динамики САУ ОЭС и решения задач управления в реальном масштабе времени», приобретенный по НИУ, используется в научно-исследовательской работе магистров, аспирантов и преподавтелей.

- аудитория №207 кафедры Оптико-электронных систем, компьютерный класс с компьютерами, объединенными в сеть с рабочим местом преподавателя, с установленным программным обеспечением MatLab, MathCad, OPAL, ZEMAX, Квант-СП;
- шаблоны отчетов по лабораторным работам;
- комплект оптических и электротехнических элементов для макетирования средств управления.

3. Прочее:

- рабочее место преподавателя, оснащенное компьютером с доступом в Интернет,
- рабочие места аспирантов, оснащенные компьютерами с доступом в Интернет, предназначенные для работы в электронной образовательной среде.

9. КАДРОВОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Реализация дисциплины обеспечивается руководящими и научно-педагогическими работниками университета, а также лицами, привлекаемыми к реализации программы аспирантуры на условиях гражданско-правового договора.

Доля научно-педагогических работников (в приведенных к целочисленным значениям ставок), имеющих ученую степень (в том числе ученую степень, присвоенную за рубежом и признаваемую в Российской Федерации) и (или) ученое звание (в том числе ученое звание, полученное за рубежом и признаваемое в Российской Федерации), в общем числе научно-педагогических работников, реализующих программу аспирантуры, должна составлять не менее 80 процентов.

Квалификация руководящих и научно-педагогических работников организации должна соответствовать квалификационным характеристикам, установленным в Едином квалификационном справочнике должностей руководителей, специалистов и служащих, раздел "Квалификационные характеристики должностей руководителей и специалистов высшего профессионального и дополнительного профессионального образования", утвержденном приказом Министерства здравоохранения и социального развития Российской Федерации от 11 января 2011 г. N 1н (зарегистрирован Министерством юстиции Российской Федерации 23 марта 2011 г., регистрационный N 20237), и профессиональным стандартам (при наличии).

Доля штатных научно-педагогических работников (в приведенных к целочисленным значениям ставок) должна составлять не менее 60 процентов от общего количества научно-педагогических работников организации.

Среднегодовое число публикаций научно-педагогических работников организации в расчете на 100 научно-педагогических работников (в приведенных к целочисленным значениям ставок) должно составлять не менее 2 в журналах, индексируемых в базах данных Web of Science или Scopus, или не менее 20 в журналах, индексируемых в Российском индексе научного цитирования, или в научных рецензируемых изданиях, определенных в Перечне рецензируемых изданий согласно пункту 12 Положения о присуждении ученых степеней, утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. N 842 "О порядке присуждения ученых степеней" (Собрание законодательства Российской Федерации, 2013, N 40, ст. 5074).

10. ЛИСТ РЕГИСТРАЦИИ ИЗМЕНЕНИЙ, ВНОСИМЫХ В РАБОЧУЮ ПРОГРАММУ УЧЕБНОЙ ДИСЦИПЛИНЫ

11. ЛИСТ УТВЕРЖДЕНИЯ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ НА УЧЕБНЫЙ ГОД

В рабочую программу внесены следующие изменения:

№ п.п.	№ страницы внесения измене- ний	Дата внесения изменений	Содержание изменений	«Согласовано» Заведующий кафедрой ОЭС	«Согласовано» Директор института АиЭП
1	2	3	4	5	6
1	1	18.12.2015г.	«В соответствии с Уставом федерального государственного бюджетного образовательного учреждения высшего образования «Казанский национальный исследовательский университет им. А.Н. Туполева-КАИ» (новая редакция) исключить слово «профессионального» из полного названия КНИТУ-КАИ»	de la	

Рабочая программа дисциплины утверждена на ведение учебного процесса в учебном году:

№ п/п	Учебный год	«Согласовано» Заведующий кафедрой ПИИС (ведущая, выпус- кающая кафедра)	Согласовано» Директор института АиЭП
1	2015/2016	С.В. Раковец	А.В. Ференец
2	2016/2017	С.В. Раковец	А.В. Ференец
3	2017/2018	С.В. Раковец	А.В. Ференец
4	2018/2019		