Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ»

Институт радиоэлектроники и телекоммуникаций

Кафедра Радиоэлектронных и телекоммуникационных систем

АННОТАЦИЯ

к рабочей программе «Теория оптимальной обработки сигналов в системах подвижной связи»

Индекс по учебному плану: Б1.В.ДВ.03.02

Направление подготовки: 11.04.02 «Инфокоммуникационные технологии и системы связи»

Квалификация: магистр

Магистерская программа: Системы и устройства подвижной радиосвязи Виды профессиональной деятельности: научно-исследовательская, проектно-конструкторская

Разработчик: ассистент каф. РТС Д.Р.Рахимов

РАЗДЕЛ 1. Цель и задачи учебной дисциплины

1.1 Цель изучения дисциплины

Целью изучения дисциплины «Теория оптимальной обработки сигналов в системах подвижной связи» является формирование у студентов теоретических знаний и практических навыков в области статистического синтеза и вероятностного анализа алгоритмов обработки сигналов применительно к инфокоммуникационным технологиям и системам связи.

1.2 Задачи дисциплины

Учебная дисциплина «Теория оптимальной обработки сигналов в системах подвижной связи» формирует единообразную концептуально-методическую базу статистической теории с акцентом на гауссовские и негауссовские флуктуации сигнально-помеховых комплексов. Программа направлена на получение багажа знаний, необходимых ДЛЯ формирования профессиональных компетентностей анализа и синтеза оптимальных, квазиоптимальных алгоритмов обработки физически И адаптивных возможных сигналов, помех ИΧ комплексов, характерных ДЛЯ радиоэлектронных систем передачи информации.

1.3 Место дисциплины в структуре ОП ВО

Дисциплина «Теория оптимальной обработки сигналов в системах подвижной связи» относится к вариативной части программы магистратуры по направлению подготовки 11.04.02 Инфокоммуникационные технологии и системы связи.

1.4 Перечень компетенций, которые должны быть реализованы в ходе освоения дисциплины

Перечень компетенций, которые должны быть реализованы в ходе освоения дисциплины:

ПК-4 — Способность к разработке методов формирования и обработки сигналов, систем коммутации, синхронизации и определение области эффективного их использования в инфокоммуникационных сетях, системах и устройствах.

- ПК-5 Способность использовать современную элементную базу и схемотехнику устройств инфокоммуникаций.
- ПК-8 Готовность использовать современные достижения науки и передовые инфокоммуникационные технологии, методы проведения теоретических и экспериментальных исследований в научно-исследовательских работах в области ИКТиСС.

РАЗДЕЛ 2 СОДЕРЖАНИЕ ДИСЦИПЛИНЫ И ТЕХНОЛОГИЯ ЕЕ ОСВОЕНИЯ

2.1 Структура дисциплины, её трудоемкость

Таблица 1

Распределение фонда времени по видам занятий

Наименование раздела и темы	Всего часов	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость в часах				Коды составляющих компетенций	Формы и вид контроля освоения составляющих компетенций (из фонда
		лекции	лаб. раб.	пр. зан.	сам.раб.		оценочных средств)
Раздел 1. Вероятностные модели с		ов, по	мех и	их ком	плексов в	?	ФОС ТК-1тесты
инфокоммуникационных системах	•		ı				V
Тема 1.1. Многообразие причин и неизбежность недетерминизма сигналов, помех, их комплексов и параметров радиоаппаратуры.	5/1			2/1	3	ПК-4.3	Устный опрос
Тема 1.2. Условия применяемости современной теории вероятности в теории систем передачи информации.	9/2			4/2	5	ПК-4.3	Устный опрос
Тема 1.3. Детерминированные, квазидетерминированные и гауссовские модели сигналов и помех.	5/1			2/1	3	ПК-4.3 ПК-4.У	Устный опрос
Тема 1.4. Причины нарушения условий центральной предельный теоремы. Типовые вероятностные описания свойств сигнально-помеховых комплексов.	5/1			2/1	3	ПК-4.3 ПК-4.У ПК-4.В	Устный опрос
Тема 1.5. Вероятностные описания наблюдаемых в приемниках колебаний при комплексах помех.	5/1			2/1	3	ПК-4.3 ПК-4.У ПК-4.В	Устный опрос
Раздел 2. Статистический синтез	ФОС ТК-2тесты						
алгоритмов приема сигналов при до Тема 2.1. Оптимальное обнаружение дискретных сигналов при гауссовском шуме.	<u>еиств</u> 9/2	ruu nox	иех.	4/2	5	ПК-5.3	Устный опрос
Тема 2.2. Оптимальное	5/1			2/1	3	ПК-5.3	Устный опрос

- 6			1		THE SA		
обнаружение – различение					ПК-5.У		
детерминированных сигналов							
при негауссовской помехе и							
гауссовском шуме.							
Тема 2.3. Оптимальное полное						Устный опрос	
разрешение суперпозиции					ПК-5.3		
случайных количеств	5/1		2/1	3	ПК-5.У		
разнотипных сигналов при	3/1		2/1	3	ПК-5.В		
негауссовских флуктуациях					11IC-3.B		
сигналов и помех.							
Тема 2.4. Априорная					ПК-5.3	Устный опрос	
недостаточность и адаптация	5/1		2/1	3	ПК-5.У		
алгоритмов в задачах	3/1		2/1	3	ПК-5.В		
радиоприема.					IIK-J.D		
Раздел 3. Теория потенциальной помехоустойчивости, ее роль в развитии теории							
радиоприема и современной теори	и связи.						
Тема 3.1. Теория потенциальной						Устный опрос	
помехоустойчивости В.А.	9/2		4/2	5	ПК-8.3		
Котельникова.							
Тема 3.2. Идеальный приемник и						Устный опрос	
потенциальная					пи ор		
помехоустойчивость бинарного	5/1		2/1	3	ПК-8.3		
различения при произвольных					ПК-8.У		
флуктуациях сигналов и помех.							
Тема 3.3. Фундаментальная роль						Устный опрос	
функций и функционалов					TTT 0 D	•	
правдоподобия при решении					ПК-8.3		
прямых и обратных задач	5/1		2/1	3	ПК-8.У		
статической теории приема					ПК-8.В		
сигналов.							
Экзамен (зачет)					ПК-8.3	ФОС ПА-	
				36	ПК-8.У	комплексное	
					ПК-8.В	задание	
ИТОГО:	108/		30/1			****	
	15		5	78			
				l .			

РАЗДЕЛ 3. ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ.

3.1 Учебно-методическое обеспечение дисциплины

3.1.1 Основная литература

- 1. Гадзиковский, В.И. Цифровая обработка сигналов. [Электронный ресурс] Электрон.дан. М. : СОЛОН-Пресс, 2013. 766 с. Режим доступа: http://e.lanbook.com/book/64979
- 2. Мартюшев, Ю.Ю. Практика функционального цифрового моделирования в радиотехнике. [Электронный ресурс] Электрон.дан. М. : Горячая линия-Телеком, 2012. 188 с. Режим доступа: http://e.lanbook.com/book/5177
- 3. Першин, В.Т. Формирование и генерирование сигналов в цифровой радиосвязи. [Электронный ресурс] Электрон.дан. Минск : Новое знание, 2013. 614 с. Режим доступа: http://e.lanbook.com/book/5425

3.2 Информационное обеспечение дисциплины

3.2.1 Основное информационное обеспечение

1. Чабдаров Ш.М. Теория оптимальной обработки сигналов в инфокоммуникационных системах [Электронный ресурс]: курс дистанционного обучения, по направлению подготовки магистров 11.04.02 «Инфокоммуникационные технологии и системы связи» ФГОС3++ (6ф-Мен) / КНИТУ-КАИ, Казань, 2015. — Доступ по логину и паролю. URL: https://bb.kai.ru:8443/webapps/blackboard/execute/courseMain?course_id=_10383_1

3.3 Кадровое обеспечение

3.3.1 Базовое образование

Высшее образование в предметной области электроники, радиотехники и систем связи и /или наличие ученой степени и/или ученого звания в указанной области и /или наличие дополнительного профессионального образования — профессиональной переподготовки в области электроники, радиотехники и систем связи и /или наличие заключения экспертной комиссии о соответствии квалификации преподавателя профилю преподаваемой дисциплины.

Лист регистрации изменений

№ п/п	Дата внесения изменений	Номера листов	Документ, на основании которого внесено изменено	Краткое содержание изменений	Ф.И.О подпись
1	2	3	4	5	6
1	28.06.2018	-	Изменений нет		357
2				***	
3					
4					
5					
6				â	
7	-				
8					